

PUNJAB PUBLIC SERVICE COMMISSION

COMBINED COMPETITIVE EXAMINATION FOR RECRUITMENT TO THE POSTS OF

PROVINCIAL MANAGEMENT SERVICE, ETC -2021 CASE NO. 3C2022

SUBJECT:

STATISTICS (PAPER-II)

TIME ALLOWED:

THREE HOURS

MAXIMUM MARKS: 100

NOTE:

- i. All the parts (if any) of each Question must be attempted at one place instead of at different places.
- ii. Write Q. No. in the Answer Book in accordance with Q. No. in the Q. Paper.
- iii. No Page/Space be left blank between the answers. All the blank pages of Answer Book must be crossed.
- Extra attempt of any question or any part of the question will not be considered.

NOTE: Attempt any FIVE questions in ALL. Calculator is allowed. (Not Programmable).

Q No. 1 a) Describe briefly the difference between

- i) Probability and Non-probability sampling.
- ii) Stratified and Cluster sampling
- b) A local community is stratified in four blocks. If we wish to select a stratified random sample of size n = 40 by proportional allocation on the basis of number of houses in each block.

Block	A	В	C	D
No. of households	144	162	198	216

Calculate the sample size allocated to each block.

- c) A population consists of 2, 4, 4, 4, 6, 8 and 10.
 - i) Draw all possible samples of size n = 2 without replacement.
 - ii) Calculate the mean of each sample and verify that

$$\mu_{\overline{X}} = \mu \text{ and } \sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}} \sqrt{\frac{N-n}{N-1}}$$

iii) Between what two values would you expect at least $\frac{8}{9}$ of the sample means to fall?

(4+4+12=20 Marks)

Q No. 2 a) Describe the following

- i) Point estimator
- ii) Confidence level
- iii) Maximum likelihood Estimation
- b) If X_1, X_2 and X_3 are a random sample from a normal population with the mean μ and the variance σ^2 , what is the relative efficiency of the estimator $T_1 = \frac{X_1 + 2X_2 + X_3}{4}$ with respect to $T_2 = \overline{X}$?
- There is a proposal under consideration to build an overhead bridge in a locality. As a part of feasibility and acceptability of this proposal, a poll is taken among the residents of the city and its suburbs. If 2400 of 4000 city residents favour the proposal and 1500 of 2000 suburban residents favour it, find a 90% confidence interval for the true difference between the proportion of city and suburban residents who favour the proposal to construct the overhead bridge.

 (6+6+8 = 20 Marks)
- Q No. 3 a) Define Type-I error and Type-II error.
 - b) A sample of 25 observations from a normal population with $\sigma = 3$, is selected at random. Test the hypothesis $H_0: \mu = 67$ against $H_1: \mu > 67$ at 5% level of significance.
 - Given two random samples of size $n_1 = 9$ and $n_2 = 16$, from two independent normal populations, with $\bar{x}_1 = 75$, $\bar{x}_2 = 60$, $s_1 = 13.61$ and $s_2 = 12.5$, test the hypothesis at the 10% level of significance that $\mu_1 = \mu_2$ against the alternative that $\mu_1 > \mu_2$. Assume that the populations have equal variances.

(2+8+10=20 Marks)

Q No. 4 a) In the context of analysis of variance, define the following:

- i) Main effects
- ii) Interaction effect
- b) Determinations of yields of a process with four treatments are given:

Process M	Tui toui (1 caum	cills are giv	CII.					
	Treatments								
	1	2	3	4					
Yields	11	6	8	14					
	4	4	6	27					
	4	. 3	- 4	8					
	5	6	11	18					

i. Test the hypothesis that no differences exist among the four treatments at $\alpha = 0.05$.

ii. Apply Least Significant Difference test to identify the pairwise significant differences at 5% level of significance. (4+16 = 20 Marks)

The following is percentage distribution by income level and ownership of a random sample of 400 Q No. 5 families in the city of Lahore.

	Monthly income						
	Less than Rs.60,000	Rs.60,000 to Rs.100,000	More than Rs.100,000				
Home Owner	5%	25%	20%				
Renter	15%	25%	10%				

Test the hypothesis that the home ownership is independent of the family income level, using 1% level of significance.

Given the two samples below, test the null hypothesis that the population medians are equal against the alternative that $M_1 < M_2$, at $\alpha = 0.05$ by applying the Wilcoxon rank-sum test.

Sample 1	26.	25.	38.	33,	42,	40,	44,	26,	25,	43,	35,	48,	37,			
Sample 2	44.	30.	34.	47.	35,	46,	35,	47,	48,	34,	32,	42,	43,	49,	46,	47

(10+10=20 Marks)

Compute the consumer price index number for 2020 with 2015 as base for the following data. Use as Q No. 6 weights (i) quantities consumed in the base year (ii) the values in the base year.

	Quantity	Price	(Rs.)	
Article	2015	2015	2020	
Food	50 kg	. 180	265 280 30 3750	
Cloth	30 metre	260		
Electricity	75 units	25		
Rent	1 room	3000		
Miscellaneous	34 units	50	70.	

Given the following data.

Year	Quarters							
	I	II	III	IV				
2015	112 .	125	129	110				
2016	119	132	147	115				
2017	120	142	150	118				
2018	128	151	162	125				

- Fit a linear trend to the annual averages.
- Calculate quarterly trend values from the trend equation obtained in part (i).

(8+12 = 20 Marks)

Describe the functions of Pakistan Bureau of Statistics. Q No. 7

Calculate the crude death rate and the standardized death rate for the data:

		Distr	ict A		Standard Population ('000)			
Age	Age Population		Number	of Deaths				
(years)	Males	Females	Males	Females	Males	Females		
0-14	2,110	2,010	30	27	59	55		
5 – 14	3,340	3,230	6	. 8	109	102		
15 – 34	7,320	7,310	16	20	177	180		
35 - 59	7,960	8,750	. 70	57	121	122		
60 & over	3,240	4,280	196	230	34	41		
			And the second second			(0112 - 20 B		

(8+12 = 20 Marks)

The following data were computed from personal records of a manufacturing firm

X; number of years of service Y: weekly wage rate

$$n = 23, \Sigma X = 2433, \Sigma X^2 = 281019, \Sigma Y = 4245,$$

$$\sum Y^2 = 841786$$
 and $\sum XY = 482788$.

- Fit a least squares regression line $Y = \alpha + \beta X + \varepsilon$
- Test the hypothesis $H_0: \beta = 0$. ii.
- The price of rice (X) and price of wheat (Y) at 243 shops are recorded with the results:

$$\sum X = 5442.2$$
, $\sum X^2 = 122155.04$, $\sum Y = 4019.6$,

$$\sum Y^2 = 66588.92$$
 and $\sum XY = 90113.83$.

- Test the hypothesis $H_0: \rho = 0$.
- Calculate 95% confidence interval for the true correlation coefficient between X and Y. ii.

(10+10=20 Marks)