

FEDERAL PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION-2024 FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT

Roll Number

PURE MATHEMATICS

TIME ALLOWED: THREE HOURS PART-I (MCQS)
PART-I(MCQS): MAXIMUM 30 MINUTES PART-II MAXIMUM MARKS = 20
MAXIMUM MARKS = 80

NOTE: (i) Part-II is to be attempted on the separate Answer Book.

- (ii) Attempt ONLY FOUR questions from PART-II. ALL questions carry EQUAL marks.
- (iii) All the parts (if any) of each Question must be attempted at one place instead of at different places.
- (iv) Candidate must write Q. No. in the Answer Book in accordance with Q. No. in the Q. Paper.
- (v) No Page/Space be left blank between the answers. All the blank pages of Answer Book must be crossed.
- (vi) Extra attempt of any question or any part of the attempted question will not be considered.

FEDERAL PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION-2024 FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT

Roll Number

PURE MATHEMATICS

TIME ALL	OWED: THREE HOURS	MAXIMUM MARKS = 10
NOTE: (i) (ii)	Attempt FIVE questions in all by selecting TWO Questions each from SECTION-A&B and ONE Question from SECTION-C. ALL questions carry EQUAL marks. All the parts (if any) of each Question must be attempted at one place instead of at different places.	
(iii) (iv)	places. Write Q. No. in the Answer Book in accordance with Q. No No Page/Space be left blank between the answers. All the be crossed.	blank pages of Answer Book in
(v) (vi)	Extra attempt of any question or any part of the attempted q Use of Calculator is allowed.	uestion will not be considered.
	SECTION-A	
Q. No.1.(a)	Let N be a normal subgroup of a group G. If H is a subgrothat	
	$NH = \{nh : n \in N \text{ and } h \in H\} \text{ is a subgroup o}$	rg.
(b)	1	n prove that G/K is (10) (20)
	isomorphic to H , where $K = Ker\phi$.	
Q. No.2. (a)	Let R be a ring. If every $x \in R$ satisfies $x^2 = x$ then prove commutative.	that R is a (10)
(b)	For which value(s) of a will the following system have no one solution? Infinitely many solutions?	solution? Exactly (10) (20
	$ \begin{array}{cccc} x + 2y - & 3z = 4 \\ 3x - y + & 5z = 2 \end{array} $	
	$4x + y + (a^2 - 14)z = a + 2.$	
Q. No.3. (a)	Determine a basis for and the dimension of the solution sp $x - 2z + w = 0$	ace of the system (10)
	3x + y - 5z = 0	
	x + 2y - 5w = 0.	
(b)	Let $v_1 = (1, 1, 1)$, $v_2 = (1, 1, 0)$ and $v_3 = (1, 0, 0)$ be a linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ such that $T(v_1) = (1, 0)$ and $T(v_3) = (4, 3)$.	passis for \mathbb{R}^3 . Find a (10) (20), $T(v_2) = (2, -1)$
	SECTION-B	
	SECTION	
). No.4. (a)	Evaluate the limit:	(10)
	(i) $\lim_{x\to\frac{\pi}{2}} (1+\cos x)^{\tan x}$	
	(ii) $\lim_{x\to 0} \left(\frac{1}{\sin x} - \frac{1}{x}\right)$	
(b)	State and prove the Mean Value Theorem.	(10) (2
Q. No.5. (a)	If $w = f(x^2 + y^2)$ then show that $y\left(\frac{\partial w}{\partial x}\right) - x\left(\frac{\partial w}{\partial y}\right) = 0$.	(10)
(b)	Find all the local maxima, local minima and saddle function $2x^3 + y^2 - 9x^2 - 4y + 12x - 2$.	points of the given (10) (2
		Page 1 of 2

PURE MATHEMATICS

- Q. No.6. (a) Evaluate the integral $\int_0^\infty x^{\frac{3}{2}} ((1+2x))^{-5} dx$ and show that the result is $\frac{9\pi}{384}$, using **Beta** function. (10)
 - (b) Find the vertices and foci of the hyperbola $25x^2 16y^2 + 250x + 32y + 109 = 0$. (10)

SECTION-C

- Q. No.7. (a) Verify that u(x,y) = cosxcoshy is harmonic function and find a (10) corresponding analytic function f(z) = u(x,y) + iv(x,y).
 - (b) Use Residue theorem to evaluate the integral $\int_C \frac{3z^2+z-1}{(z^2-1)(z-3)} dz$, where C is the circle |z|=4.
- Q. No.8. (a) Use the Cauchy's integral formula to evaluate the integral (10) $\int_C \frac{z+4}{z^2+2z+5} dz$, where C is the circle |z+1-i|=2.
 - (b) Find the three cube roots of $\sqrt{3} + i$. (10) (20)

Page 2 of 2