KPK, PUBLIC SERVICE COMMISSION

Competitive Examination for the posts of PMS, 2016

PURE MATHEMATICS, PAPER I

Time Allowed: 03 Hours Max. Marks: 100

Instructions: Attempt FIVE questions in all. Select THREE from section A and TWO from section B.

All question carry equal marks.

SECTION A

- Q1.(a) Define cyclic group? Find all the subgroups of a cyclic group of order 12. (10)
 - (b) Find all the subgroup of S₃? (10)
- Q2.(a) Determine whether the following vectors linearly independent or not. (10) $v_1(1,1,2)$, $v_2(1,2,5)$ and $v_3(5,3,4)$.
- (b) Solve the system of equations. x + 2y + z = 2, 3x + y 2z = 1, 4x 3y z = 3. (10)
- Q3(a)Find the rank of the matrix $\begin{bmatrix} 2 & 2 & -1 & 0 & 1 & 0 \\ -1 & -1 & 2 & -3 & 1 & 0 \\ 1 & 1 & -2 & 0 & -1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 \end{bmatrix} . \tag{10}$
- (b) Determine a basis for the null space of matrix $\begin{bmatrix} 1 & 2 & -3 & 2 & -3 \\ 1 & -1 & 1 & -2 & 0 \\ 0 & 1 & -1 & 1 & -1 \\ 1 & 2 & 5 & -6 & -3 \end{bmatrix}$ (10)
- Q4(a) Find the Eigen values and Eigen vectors of the matrix $\begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix}$ (10)
- (b) Use Cayley-Hamilton Theorem to find A^3 if $A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$ (10)

Section B

- Q5(a) Find the equation of the plane passing through the points (2, -3, 1) and containing the line x 3 = 2y = 3z 1 (10)
- (b) Find the equation of the sphere if the centre is on the line x = y = z and it passes through the points (5,3,0) and (-1,4,1).
- Q6(a) Find the equation of the tangent plane to the surface $z=x^2+y^2$ at the point (2,1,5). Find also the equation of normal line at that point. (10)
 - (b) Transform the equation of the curve $\rho = 3\cos\theta\sin\varphi$ into the spherical coordinates and rectangular coordinates. (10)
- Q7(a) Determine the length of the cycloid $x = a(\theta + \sin \theta)$, $y = a(1 \cos \theta)$ between the cusps. (10)
 - (b) Determine the curvature at the point $\left(\frac{1}{2}, \frac{1}{2}\right)$ on the folium $x^3 + y^3 = 3xy$.

