120.1

Competitive Examination for the posts of PMS/2002, 2018 Applied Mathematics, Paper-1

Time Allowed: 03 Hours Max Marks: 100

Instructions: Attempt total FIVE questions, TWO from Section-A and THREE from Section-B.

Section-A

		4 100	
1.	(a)	Show that $(b \times c) \cdot (c \times a) \times (a \times b) = (a \cdot b \times c)^2$	(10)
	(b)	Prove the physical interpretation of cross product $a \times b$.	(10)
2.	(a)	If $r = xi + yj + zk$ and a is constant, prove that $div[a \times grad(1/r)] = 0$.	(10)
	(b)	Show that Curl $f = \text{grad div } f - \nabla^2 f$	(10)
	(~)	one was care y - grad arr y	
3.	(a)	Forces P, Q act at a point O and their resultant is R. If any transversal cuts the lines of	
		the forces on the points A, B, C respectively, prove that $\frac{P}{QA} + \frac{Q}{QB} = \frac{R}{QC}$	(10)
		the forces on the points A, B, C respectively, prove that $\frac{1}{OA} + \frac{1}{OB} = \frac{1}{OC}$	(10)
	(b)	If forces $l \overrightarrow{AB}$, $m \overrightarrow{BC}$, $l \overrightarrow{CD}$, $m \overrightarrow{DA}$ acting along the sides of a quadrilateral are equiva-	alent to
		a couple, show that either $l = m$ or ABCD is a parallelogram.	(10)
4.	(a)	A body weighing 401b is resting on a rough horizontal plane and can just be moved by	a force
		of 101b weight acting horizontally. Find the coefficient of friction.	(10
	(b)	Define Principal of virtual work and explain briefly its application with example.	(10)
		Section-B	
5.	(a)	Obtain Tangential and Normal components of acceleration.	(10)
	(b)		(10)
6.	(a)	line, at any time t if it starts from rest at $t = 0$ and is subject to an acceleration	
		$t^2 + Sint + e^t$.	(10)
	(b)		
		from a height h at the same time. Find the height of the point where they meet exother.	ach (10)
7.	(a)		
		acceleration at a point P are u and f respectively and the corresponding quantit	
	(b	another point Q are v and g . Find the distance PQ . If a point P moves with a velocity v given by $v^2 = n^2(\alpha x^2 + 2bx + c)$, show th	(10)
	(0	executes a simple harmonic motion. Find the centre, the amplitude and time per	
		the motion.	(10)
8.	(a)		
		the point B with position vectors 2i+7j-3k and 5i-3j-6k respectively. Find the we	
		done.	(10)
	(b		(10)
3). (a	Explain Apsides and apsidal distances with examples for nearly circular orbits.	(10
	(b		
		mathematical example and Sketch its motion.	(10