## KHYBER PAKHTUNKHWA PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION FOR THE POSTS OF PMS OFFICERS (BPS-17)

## PURE MATHEMATICS PAPER-II

Time Allowed: 03 Hours

Maximum Marks: 100

Instructions: Attempt three questions from Section A and two questions from Section B.

## SECTION A

Q1. (a) Find (i) 
$$\lim_{x\to 0^+} x^x$$
 (ii)  $\lim_{x\to \pi/2} (\tan x)^{\cos x}$  (10)

(b) Is there a value of 
$$k$$
 that will make  $f(x) = \begin{cases} x + k, & x < 0 \\ cos x, & x \ge 0 \end{cases}$  continuous at  $x = 0$ ? Differentiable at  $x = 0$ ? Justify your answer.

Q2. (a) Find the extreme values of the function 
$$f(x,y) = x^3y^2(1-x-y)$$
. (10)

(b) Evaluate the 
$$\int \frac{dx}{(x^2 - 2x + 1)\sqrt{x^2 - 1}}$$
 (10)

Q3. (a) Test the convergence of (i) 
$$\sum_{n=1}^{\infty} \frac{n \ln(n)}{2^n}$$
 (ii)  $\sum_{n=1}^{\infty} \frac{(-1)^n \sin(n)}{n^2}$  (10)

(b) Find the value of 
$$\int_0^1 \left(\sum_{n=1}^\infty \frac{x^n}{n(n+2)}\right) dx$$
. (10)

Q4. (a) Show that in a metric space 
$$(X, d)$$
, every finite set is closed. (10)

(b) Let 
$$(X, d)$$
 be a metric space,  $A \subseteq X$  and  $a \in X$ . Show that  $a \in \overline{A}$  iff there exists a sequence  $\{x_n\}$  in  $A$  such that  $x_n \to a$ , where  $\overline{A}$  stands for closure of set  $A$ . (10)

## SECTION B

Q5. (a) Find the solution of 
$$cos(z) = 1/2$$
. (10)

(b) Show that 
$$tanh^{-1}z = \frac{1}{2}log(\frac{1+z}{1-z})$$
. (10)

**Q6.** (a) Verify that  $U(x,y) = tan^{-1}\left(\frac{y}{x}\right)$  is harmonic in  $\mathbb{C}$  and find its conjugate harmonic function. (10)

(b) Find the Laurent series of the function 
$$f(z) = \frac{1}{(z-1)(2-z)}$$
 in  $|z| > 2$ . (10)

Q7. (a) Using Residue theorem, find 
$$\int_{|z|=2} \frac{e^z}{z(z-1)^3} dz.$$
 (10)

(b) Let 
$$\gamma$$
 be the upper half of a unit circle, oriented counterclockwise. Show that  $\left| \int_{\gamma} \frac{e^z}{z} dz \right| \le \pi e$ . (10)